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Abstract---Plastic waste-to-energy (WtE) systems hold immense potential to address the global challenge of 

plastic pollution while generating valuable energy resources. However, these systems cannot operate at optimal 

efficiency due to fluctuations in the composition of the feedstock, poor process conditions, and lack of proper 

monitoring in real-time resulting in fluctuations in energy generated and emissions. Modern solutions are 

nongenerative and do not have adaptation mechanisms, making them too dependent upon their configurations 

and cannot be easily scaled up or maintained for the long term. To tackle these problems, this research 

proposes combining IoT-based real-time data acquisition with sophisticated Gradient Boosting Machine 

Learning (ML) algorithms for real-time adjustments and predictions in WtE systems. TheIoT sensors gather 

different feedstock properties, reactor conditions, and emissions, providing data streams to a gradient-boosting-

based prediction engine. This engine predicts basic and major parameters like gross energy ratio, emission, and 

efficiency of the waste conversion system. From these prediction data, a multi-objective optimization module 

adaptively controls the operation parameters to attain the maximum possible energy reuse and a minimum 

environmental influence. In the following, some benefits of the proposed solution are presented: better 

prediction error measure, real-time decision-making, and the potential to minimize GC emissions. The pilot 

implementation carried out in the MW-scale WtE plant showed up to 20% improvement in efficiency as well as 

decreased emissions in comparison with conventional systems. This study in particular timely contributes to the 

state-of-the-art of plastic WtE technologies by providing a scalable, data-validated, and green solution that 

idealistically connects the present deficiency between theoretical production and practical implementation. 

I.  INTRODUCTION 

1.1 Background and Motivation   

lastic waste is now one of the biggest environmental problems in the world, and millions of tons of it 

end up in landfills and seas every year. The waste-to-energy (WtE) systems present a viable alternative 

in that the plastic wastes are converted to useful energy such as electricity and heat. These systems can 

greatly help to decrease contamination in the environment while satisfying the global energy demand [1]. 

Nonetheless, the heterogeneity of plastics and poor performance of the existing WtE technologies prevents 

greater efficacy. Through the use of sophisticated technologies like machine learning and the IoT, it is possible 

to extend greater plastic WtE optimization, flexibility, and sustainability impacts. 
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1.2 Challenges in Plastic Waste-to-Energy Systems 

The modern plastic WtE system has the following challenges, one being the inconsistency of the input waste in 

terms of plastic content which consequently affects the output energy [2]. Under ideal process optimization, 

energy recovery is perfect and GHG emissions are minimal but in real-life scenarios, energy losses are common 

culminating in high emissions. Furthermore, systems that have been used conventionally do not offer 

opportunities for dynamic control for feedstock and operations [3] and do not facilitate real-time controls. These 

challenges are aggravated by poor modeling for predicting the performance of the system and the expensive 

costs required to make the change manually. These challenges can only be overcome by adopting smart 

technologies to support real-time informed decision-making for WtE processes [4]. 

1.3 Research Objectives   

The contribution of this research is to establish a new framework that increases both the efficiency and 

sustainability of the given plastic waste to energy systems. The main objectives involve developing an IoT 

monitoring framework to collect data in real-time, developing GBM Machine Learning algorithms to estimate 

energy yield and emission, and adjusting process parameters optimally for maximal energy recovery and lowest 

emission. The research also aims to assess the proposed framework in terms of its feasibility by implementing it 

on a pilot scale and proving that the new system is superior in scalability, cost-effectiveness, and environmental 

impact analysis to traditional systems. 

II. REVIEW OF LITERATURE 

Farghali and Osman [5] present a study that analyses the progressive role of artificial intelligence (AI) and 

machine learning (ML) in uplifting waste management, mostly concentrating on the advancement made in the 

efficiency of energy recovery from waste. AI and ML enable the improvement of the mechanical handling of 

waste and distribution of the waste for sorting, recycling, and use for energy and lower environmental waste. 

Nevertheless, the commitment to these technologies has some constraints such as data quality problems, 

compatibility problems with the current systems, and high initial costs. In addition, the essential characteristics 

or parameters of the waste systems may have to be updated periodically to increase the scalability and 

applicability of the AI and ML models in their different contexts.  

Bristol, Gue, and Ubando[6] have also written a comprehensive review of the role of machine learning in 

municipal WtE systems emphasizing the opportunity to improve waste management and energy recovery. Both 

authors explain how the ML balances waste sorting, analyzes energy yield and determines the optimal 

operational variation for increasing efficiency and composability. However, it is also argued that the actual 

application of these systems is problematic due to the requirement for accurate data, compatibility with current 

structures, and the computational demands of sophisticated models respectively. Moreover, considerations of 

scale and how these systems can be modified to accommodate the range of wastes and geophysical contexts 

remain major issues of concern.  

Arun et al. [7] share a comparative review of prediction algorithms in waste management systems with the 

application of artificial intelligence. The authors also look at the decision tree, support vector machines, and 

neural network techniques in analyzing waste generation so that the frequency of collection and recycling may 

be enhanced. Such algorithms help improve efficient Sustainable Waste Management especially since the 

algorithms can estimate the future trends in waste.Limitations stated include; data accuracy and 

comprehensiveness; model generalization; and the compatibility of AI systems with current waste management 

infrastructure, which may pose a barrier to the broad implementation of the study. 

Shi and Wang [8] on the process of medical waste treatment involving the utilization of thermal plasma, 

addressed the execution of ML models to estimate the capacity and efficiency of the system and its products. 

The studies show how the operation of thermal plasma systems may be improved by the ML algorithms through 
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the prediction of consumption of energy, efficiency in the treatment, as well as the formation of by-products in 

the waste disposal and management processes. However, some limitations include technical difficulties in 

coupling the ML design with existing thermal plasma systems, data fluctuation, and data quality that requires 

real-time.  

In the work under discussion, Gupta et al. [9] offer an algorithmic critique of sustainable organic waste 

treatment through ML, illustrating how specific schemes might facilitate great improvements in waste handling 

and effective output.To improve waste decomposition, biogas production, and nutrient recovery, the authors 

discuss a potential ML approach, including supervised learning and neural networks for organic waste treatment 

with some pros and cons: the interpretability of the model, the need for standard and diverse data, and the 

integration with existing waste treatment plants. The global ML solutions within this area cannot overcome 

these barriers to achieve scale and advance application.  

In their study on world tendencies of plastic waste management, Reza and colleagues [10] combine AI-based 

predictive analytics and consider economic and social effects. The work also examines the role of ML and data 

analytics in estimating the generation of plastic waste, the best ways to recycle it, and enhancing efficiency in 

converting waste into energy.The authors present the economic and social angles of AI in efforts to sustainably 

address plastic waste Problems including the absence of standardized data, the necessity for effective AI models 

that could be flexibly applied across the global landscape, and the interaction of AI with established waste 

management frameworks are defined as important barriers to wide implementation. 

Ascher [11] has published his doctoral dissertation on Environmental & Techno-Economic Analysis of 

Biomass and Waste Gasification with the help of Machine Learning Techniques. The paper focuses on ML's 

potential for improving the performance and sustainability of gasification technology through the prediction of 

output quality, energy efficiency, and operating cost. The author underlines the opportunity to utilize machine 

learning to minimize negative consequences for the environment and improve cost efficiency. However, the 

research also recognizes issues such as, data quality, bounding the integration of ML models with existing 

technologies, and the computational constraints associated with real-time decision-making for large-scale 

systems. 

Ganesh et al. [12] explore the probabilistic forecast and big data analytics to propose long-term MSWM plans 

for smart cities regarding Madurai city. The research aims to determine the possibilities of the application of 

modern methods of data analysis and machine learning for the enhancement of the efficiency of waste 

collection, recycling, and sorting, which can lead to the improvement of the ecological conditions on the earth. 

Real-time information utilizing the predictive models reveals the potential of waste generation, to enhance 

resources and decisions. Yet, the difficulties like data reliability, adopting new technologies to the surrounding 

infrastructure, and verifying the replicability of such models to other cities that are mentioned in the study 

should be discussed as the concerns that need further improvement. 

III. PROPOSED FRAMEWORK   

3.1 System Architecture   

The proposed framework consists of three interconnected modules: concerns that involve the collection of 

large amounts of data, the use of analytics in determining future trends and behavior, and the management of 

resources to improve efficiency and effectiveness. Real-time data gathering is performed by the data acquisition 

module using IoT sensors regarding the feedstock plastic-type, reactor conditions, and emission measurements. 

The predictive analytics module uses Gradient Boosting algorithms to establish the subsequent KPI indicators, 

including energy yield rates and emission rates. Lastly, the optimization module continues to control the 

feedstock ratio reactor temperature, and other operational parameters in real-time as analyzed by the predictive 

analytical engine. These are connected to a master control system, where all participatory communication, 



 
International Journal of Emerging Technologies for Man kind 

Volume 1, Issue 1, March 2025, pp. 1-11 

4 

 

instant feedback, and even an intelligent adaptation process of decision-making for effective WtE process is 

maintained. 

3.2 Integration of IoT and Machine Learning 

IoT and machine learning are combined at the core of the suggested framework. Many WtE system 

components are outfitted with IoT sensors that provide high-quality, real-time temperature, pressure, and waste 

data. The aforementioned data is then sent to a cloud-analyzing platform where the use of machine learning 

unveils valuable information. Using IoT for constant supervision and machine learning for prognostic insights, 

the system allows the modulation of functional variables, which improves the range of energy return and lessens 

emissions. In this way, IoT and machine learning complement each other to guarantee that WtE methodologies 

are strong, flexible, and scalable. 

3.3 Role of Gradient Boosting in Prediction and Optimization 

Gradient Boosting algorithms have become very important for forecasting the efficiency of the system and 

improving the overall performance of the WtE framework. These algorithms calculate past and ongoing data, 

providing invariable accuracy in energy output, emissions, and conversion efficiency. These predictive insights 

are then applied in the optimization module where one can change the feedstock blend and reactor condition 

dynamically. Non-linear relationships make Gradient Boosting suitable for use in modelingWtE processes’ 

complex interactions, productivity, and sustainability in various operational conditions. 

IV. METHODOLOGY 

4.1 Data Collection and Processing 

Data collection includes the installation of IoT devices within the WtE system to acquire real-time data 

including waste characteristics, the temperature within the reactor, and the amount of emissions. Information 

from other analogous healthcare organizations is also employed during the training of the developed models. 

The data collected is preprocessed for accuracy and removal of noise, normalized for uniformity and to get rid 

of outliers. Simply, the problem of missing values is solved with imputation, and then, the initial dataset is split 

into training/test sets. It makes the data collected and processed include all the important points needed for 

correct predictions and optimization in the WtE system. 

4.2 Feature Engineering 

Feature engineering deals with the selection and transformation of features to improve the performance of 

forecast systems. Some of these factors are the properties of the feedstock such as the type of plastic, and its 

moisture content whereas others are parameters within the reactor such as temperature and pressure, or without 

the reactor as the environmental temperature among others. Interaction terms and specifically transformed 

variables, for example, feedstock to energy ratios, are also considered. To save time and space, this paper uses 

Recursive Feature Elimination (RFE) as the feature selection method for dimensionality reduction. This well-

defined approach to feature engineering also precludes the Gradient Boosting model from being a black box and 

guarantees optimal run time and space complexity. 

4.3 Gradient Boosting Model Development 

Gradient Boosting helps constructively establish a strong model for energy yield, emission levels, and waste 

conversion efficiency. The model is built using both past as well as live data and tuning hyperparameters for 

example learning rate, number of estimators, and maximum depth by either grid search or Bayesian 

optimization. One of the major features that have favored its accuracy in predictions is the complex nature of the 

interdependent features. To ensure cross-validation, the model’s performance is examined, and its outcome is 
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compared to that of other models. The Gradient Boosting model as developed is the key predictive engine used 

in the WtE framework, especially in real-time decision-making and improvement. 

4.4 Multi-Objective Optimization Algorithm 

A multi-objective optimization algorithm is used to achieve the best compromise between two or more 

objectives, a common case being the maximization of energy recovery and the minimization of emissions. 

Another point is that the optimization module is based on the predictive outputs from the gradient-boosting 

model of constraints and objectives. They work on optimizing the operational parameters where methods like 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO), and others are 

used. These algorithms provide multiple points that make up the Pareto-optimal set defined by feedstock 

compositions and reactor conditions. Through dynamic optimization, WtE operates efficiently as a closed-loop 

conversion system to handle different operational scenarios in the optimization process as stated below: 

V. REAL-TIME MONITORING AND PREDICTION ENGINE 

5.1 IoT-Enabled Data Acquisition 

A real-time data gathering system acquired through IoT is very conspicuous in the efficient and continuous 

collection of data from several points in the WtE process. Several parameters including plastic waste content, 

temperature, pressure, efficiency of the reactor, and emission rates are monitored through the use of sensors. All 

of these sensors feed data into a cloud-based hub so that the performance of the various systems can be actively 

tracked. The accumulated experience of working with IoT integration showed that you can collect data at high 

frequency, which means that fluctuations in operation will be reflected at the level of their registration. This data 

stream sustains the predictive analytic systems feed as the input or set for optimum decision as well as the 

system control. 

5.2 Predictive Analytics for Energy Output and Emissions 

The predictive analytics engine uses IoT sensor-derived real-time data in energizing to forecast energy yield 

and emission magnitude. Based on the feedstock characteristics, reactor conditions, and other environment 

inputs, the system employs machine learning algorithms, particularly Gradient Boosting to create a model that 

will predict performance metrics. For the energy power output for bioenergy, the efficiency of waste conversion 

to energy, and the emissions, the model can generate good forecasts. This predictive capability enables the 

operator to prepare for the eventuality of a future problem and make suitable corrections to the process beforethe 

occurrence, hence effectively utilizing the energy recovered and containing adverse effects on the environment. 

Further, they help in decision making making corrections, and fine-tuning parameters in actual line real-time 

mode. 

5.3 Dynamic Feedback Mechanism 

The dynamic feedback mechanism involves feed-forward from the analytics engine for readjusting the 

operation parameters due to actual field conditions. If suboptimal behavior is observed, for example, a decrease 

in energy generation or an increase in emissions, the system sets corrective actions about certain process 

parameters such as the feed rate or reactor temperature. This feedback loop makes the WtE system very 

sensitive to changes in conditions, maintaining high system efficiency all the time. The feedback mechanism 

increases the process's efficiency and the system's sustainability in energy conversion and emission reduction to 

make real-time adaptations. 
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VI. IMPLEMENTATION 

6.1 Pilot Deployment in WtE Facilities 

The pilot study consists of applying the developed framework to a designated WtE plant to test feasibility and 

efficacy. In this phase, IoT sensors are attached to feed composition, reactor conditions, and emissions for the 

feedstock. The Gradient Boosting model is built using the data specific to the facility and the Predictive 

analytics and the optimization algorithm are validated in the real-time decision environment. In the pilot, it is 

intended to prove that the use of the presented framework improves energy recovery, lowers emissions, and 

makes the system more adaptable. Further adjustments can be made based on the pilot deployment effects, and 

measurement outcomes will show that the concept is viable at a vast scale. 

6.2 Integration with Process Control Systems 

The implementation of the proposed framework, therefore, has to be done in a way that could easily interface it 

with the other process control systems that are currently in place to ensure real-time control. Connecting closely 

with SCADA and DCS the system allows for perpetual supervision and cyclic alternation in the facility work. 

Information collected by the IoT sensors is fed into the central platform which sends back estimated information 

and the recommended optimization to the control systems. This guarantees that the input feed is pro!erities for 

the process such as feedstock input and reactor control settings are controlled following real-time forecasts. A 

successful integration of this system boosts the efficiency of the working systems and enables corrective actions 

where necessary. 

6.3 Real-Time Dashboards   

In this paper, real-time dashboards are built to capture performance and system status to provide the operators 

with effective immediate feedback. Information that is shown includes energy output, amount of emissions, 

reactor parameters, and feedstock, all of which are updated using IoT data streams. For informational purposes, 

forecasting of the output of energy and emissions, among other performances, is also provided. Such incurred 

interactivity enables users to interrogate individual data components, monitor dynamics, and correspondingly 

undertake appropriate actions to increase the sustainability of the WtE systems. 

VII. EVALUATION AND RESULTS 

7.1 Key Performance Indicators (KPIs) 

The effectiveness of the proposed framework is measured by several KPIs, including energy return, emissions 

avoidance, waste conversion rate, flexibility of the system, and real-time optimization proficiency. All of these 

KPIs are crucial in establishing the effect of the framework on the operational effectiveness and viability. They 

are compared to control data of other similar established waste-to-energy facilities. The suggested solution 

promises to enhance energy recovery and decrease emissions with real-time monitoring and moving towards a 

proactive process thanks to machine learning. 

Table 1. Comparison of Key Performance Indicators (KPIs) for the existing methods and the proposed waste-to-

energy framework. 

KPI Existing Methods Proposed Solution 

Energy Yield (%) 85 95 

Emissions Reduction (%) 10 30 

Waste Conversion Efficiency (%) 80 90 

Operational Adaptability Low High 

Real-time Optimization Impact None Significant 
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Figure 1. Graphical Representation of Energy Yield (%) 

7.2 Model Accuracy and Predictive Performance 

To evaluate the predictive capabilities of the Gradient Boosting model, the accuracy of its estimated energy 

yield, emission, and waste conversion rate predictions is looked at. The performance of the model in 

generalizing to new data and also in its performance to new conditions is also measured. The evaluation is done 

using cross-validation whereby the pilot deployment data set is used to validate the predictive performance of 

the model in real time. Based on the analysis of experimental data, it is possible to indicate the advantages of the 

proposed model compared to classical models in terms of prediction accuracy and model parameters’ sensitivity 

to changes in the parameters of the stock market indicator and the period under consideration. 

Table 2. Evaluation of model accuracy and predictive performance metrics for existing methods versus the 

proposed Gradient Boosting model. 

Metric Existing Methods Proposed Solution 

Prediction Accuracy (%) 80 95 

Model Training Time (Hours) 12 6 

Adaptability to Changes Low High 

 

 

Figure 2. Graphical Representation of Prediction Accuracy (%) 

7.3 Comparison with Baseline Systems 

The comparison with baseline systems is done based on how the proposed framework contributes to the 

functioning of the system. Baseline systems are usually very rigid and can only be set up using linear tuning 

factors and some forms of monitoring and control that are not efficient enough compared to the proposed 

solution that involves real-time monitoring, predictive analytics, and dynamic optimization. Using this 
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comparison, aspects like energy efficiency, emission rates, and operational flexibility are measured in 

quantitative terms to illustrate the benefits of the proposed system in generating higher efficiency and 

sustainability. 

Table 3. Comparative analysis of baseline system performance versus the proposed framework in terms of 

operational improvements. 

Metric Existing Methods Proposed Solution 

Energy Efficiency (%) 80 95 

Emissions Reduction (%) 15 35 

Operational Downtime (Hours/Month) 15 5 

Cost Efficiency (USD/kWh) 0.15 0.12 

 

 

Figure 3. Graphical Representation of Energy Efficiency (%) 

 

7.4 Energy Recovery and Waste Minimization 

The energy recovery and waste minimization assessments consider the energy value per unit of the plastic 

waste processed under both the current and proposed configurations. The conceptualized framework envisages 

enhanced energy recovery than the current static configuration due to adaptive control of operational parameters 

to real-time information as well as forecasting information. The effectiveness of waste minimization is also 

evaluated concerning the proportion of waste items that are not converted during the process. 

Table 4. Energy recovery and waste minimization metrics for baseline systems compared to the proposed 

solution 

Metric Existing Methods Proposed Solution 

Energy Recovery 

(kWh/kg of waste) 
0.85 1.05 

Waste Left After 

Conversion (%) 
10 5 
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Figure 4. Graphical Representation of Energy Recovery (kWh/kg of waste) 

7.5 Environmental Impact (Emissions) 

In this section, the environmental aspect is assessed specifically, primarily emissions to the atmosphere such as 

CO2, NOx, and particulate matter. The proposed solution is the possibility to decrease emissions by dynamically 

controlling and optimizing reactor parameters and it compares with the baseline system. Reduced emissions 

metrics have been shown, using the presented research results, to be beneficial in terms of predictive and 

optimization properties to enhance overall environmental sustainability.  

Table 5. Environmental impact comparison, focusing on CO2, NOx, and particulate matter emissions for 

existing and proposed methods. 

Emission Type Existing Methods Proposed Solution 

CO2 Emissions (g/kWh) 200 150 

NOx Emissions (g/kWh) 30 20 

Particulate Matter 

(mg/kWh) 
15 8 

 

7.6 System Scalability and Flexibility 

The feasibility of the proposed facility is established based on the observation of its performance when 

implemented for various sizes of facilities and different types of plastic waste. The baseline systems which are 

usually developed to solve problems under certain conditions may not be very effective as far as applicability is 

concerned in different settings are concerned. On the other hand, the proposed solution is intended to be easy to 

scale and effectively portable across different operation contexts, as evidenced by performance outcomes across 

a set of WtE plants. 

Table 6. Scalability and flexibility assessment for existing systems versus the proposed waste-to-energy 

framework. 

Metric Existing Methods Proposed Solution 

Scalability (facility size) Low High 

Flexibility (waste types) Low High 

VIII. DISCUSSION 

8.1 Benefits of Real-Time Optimization 

Real-time optimization optimizes WtE systems process parameters concerning dynamic working conditions to 

improve efficiency. This optimization results in higher values of energy recovery, minimized emissions, and 
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increased efficiency in converting wastes. The use of the predictive system means that any changes will be made 

before reaching the point of either failure or inefficiency of the system. Real-time operation also attracts more 

dynamic adjustments to changes in waste contents, as the system can always achieve maximum performance 

even with changes in inputs. The system’s accuracy rises over time with actual-time data extracted from the IoT 

sensors and enhanced using machine learning algorithms, thus removing much human interference and 

enhancing overall performance stability/efficiency. 

8.2 Environmental and Economic Implications   

With regards to the environmental impact of the proposed solution, there are the following pros: decrease of 

hazardous emissions which include; CO2, NOx, and particulate matter. These improvements are reflected 

through the enhancement of air quality and the general support of international policies on sustainability by 

reducing waste emissions. From an economic perspective, the system’s beneficiaries experience increased 

effectiveness and decreased use of energy and funds. Since it is possible to maximize energy recovery from 

waste plastics, it is possible to make the entire waste management cheaper in the long run. Third, since 

substantial waste may not be left after processing, the system cuts on the utilization of landfills, which is both an 

environmentally and a cost-effective solution. 

8.3 Limitations and Potential Challenges 

However, there are some limitations and challenges that can be related to the proposed solution and which pose 

some risks to its successful implementation given below. Another question is to provide high-quality, consistent 

RT data from IoT sensors that can be challenging for the sensors deployed in various settings. Further, the 

integration of the system with incumbent structures and systems might prove to be an operational challenge in 

terms of hardware and software investment needs. You may also have heavy computational overhead in model 

training and model optimization. Lastly, growth may be restricted in small or relatively technically 

inexperienced centers. To overcome these challenges is to constantly improve the system to make it more 

flexible to meet the various operational conditions. 

IX. CONCLUSION 

The development of efficient WtE systems is an efficient response to two global issues – waste disposal and 

the generation of heat and electricity. Incorporation of IoT sensors and ML algorithms such as Gradient 

Boosting, the proposed architectural framework records impressive outcomes on energy recovery, waste 

conversion efficiency, and emissions level. Real-time prediction of energy output and emissions is possible with 

the proposed solution, enabling system steady state optimization and operational adaptation continuously. 

Pilot implementation of the presented framework in the integration with the existing process control systems 

has demonstrated several benefits in enhancing the overall performance of WtE plants. In other words, using 

real-time data to dynamically adjust some of the key parameters that drive the operation of the system has the 

potential to make the entire waste management process more sustainable and cost-effective in the long run. 

Further, it helps identify several more specific ways to increase energy yield, thus providing better economic 

results and correspondingly lesser negative effects on the environment. 

However, limitations exist within the use of the framework such as the quality of the sensor data used and 

integration of the framework with other plant systems as well as its scalability in small or less technologically 

advanced plants. These challenges cannot be met unless there is constant improvement of this concept, training 

the staff, and aligning this concept with different operational environments. 

In conclusion, the work presented here is a step forward in the evaluation of Plastic WtE systems, with an 

improvement in both the environmental and economic aspects. The employment of real-time data acquisition 

techniques, machine learning, and optimization algorithms gives comprehensive solutions to the challenges 
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posed by traditional systems. Promoting additional efficiency in energy capture, reducing losses, and mitigating 

emissions, this solution may radically shift the paradigm of managing end-of-life plastic products and translate 

them into highly valuable energy, a cleaner and more sustainable future. More work has to be done to gain and 

optimize the benefits that this model offers and expand it to the rest of the world. 
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